
Automated SAT-based
Analysis of Relational Models
and Code
Marcelo Frias mfrias@dc.uba.ar
University of Buenos Aires
Argentina
(Joint work with Juan Galeotti and Nicolas Rosner)

Tutorial. RelMiCS/AKA 2009, Doha, Qatar, 1-5 November, 2009.

mailto:mfrias@dc.uba.ar

Contents

SAT-solving

Alloy and the Alloy Analyzer

KodKod

TACO: Translation of Annotated COde

Conclusions and further work

SAT-Solving

The SAT problem: given a propositional formula A, find
a satisfying valuation v : Vars -> {T, F}.

First problem to be known as NP-complete.

SAT-Solving
A literal is a variable v or its negation (not v)

A literal is pure if it appears always with the same sign.

A clause is a disjunction of literals:

v1 or not v2 or ...or not vk {v1, not v2,..., not vk}

A unit clause contains a single literal.

A formula is in conjunctive normal form (CNF) if it has
the form

f = c1 and c2 and ... and cn

where the ci are clauses. f = {c1, c2,..., cn}

SAT-Solving
The Davis-Putnam-Logemann-Loveland algorithm (1960, 1962):

DPLL(Φ) =
if Φ is a consistent set of literals then return
true;

if Φ contains an empty clause then
return false;

for every unit clause l in Φ
Φ := unit-propagate(l, Φ);

for every literal l that occurs pure in Φ
Φ := pure-literal-assign(l, Φ);

l := choose-literal(Φ);
return DPLL(ΦΛl) OR DPLL(ΦΛnot(l));

SAT-Solving: Examples
DPLL(Φ) =
if Φ is a consistent set of literals then return
true;

if Φ contains an empty clause then
return false;

for every unit clause l in Φ
Φ := unit-propagate(l, Φ);

for every literal l that occurs pure in Φ
Φ := pure-literal-assign(l, Φ);

if there are literals left then
l := choose-literal(Φ);
return DPLL(ΦΛl) OR DPLL(ΦΛnot(l));

Φ0 = {{v1,not v2}, {not v2,v3}, {v2,v4}}

if Φ is a consistent set of literals then return
true;

if Φ contains an empty clause then
return false;

for every unit clause l in Φ
Φ := unit-propagate(l, Φ);

for every literal l that occurs pure in Φ
Φ := pure-literal-assign(l, Φ);

if there are literals left then
l := choose-literal(Φ);
return DPLL(ΦΛl) OR DPLL(ΦΛnot(l));

Φ1 = {{true}, {true}, {true}} = {}Φ0 = {{v1,not v2,not v3}, {not v2,v3}, {not v1,v2,v4}}

if Φ is a consistent set of literals then return
true;

if Φ contains an empty clause then
return false;

for every unit clause l in Φ
Φ := unit-propagate(l, Φ);

for every literal l that occurs pure in Φ
Φ := pure-literal-assign(l, Φ);

Φ1 = {{v1,not v2,not v3}, {not v2,v3}, {true}}Φ1 = {{v1,not v2,not v3}, {not v2,v3}}Φ1Λv1 = {{true,not v2,not v3}, {not v2,v3}}

if there are literals left then
l := choose-literal(Φ);
return DPLL(ΦΛl) OR DPLL(ΦΛnot(l));

Φ1Λv1 = {{not v2,v3}}

if Φ is a consistent set of literals then return
true;

if Φ contains an empty clause then
return false;

for every unit clause l in Φ
Φ := unit-propagate(l, Φ);

for every literal l that occurs pure in Φ
Φ := pure-literal-assign(l, Φ);

Φ1Λv1 = {}

if there are literals left then
l := choose-literal(Φ);
return DPLL(ΦΛl) OR DPLL(ΦΛnot(l));

The Alloy Modeling
Language (Jackson)

Allows to describe data domains, and operations on
such domains.

The Alloy Analyzer allows to analyze wether properties
hold in the models (but within bounded sizes for data
domains).

A Simple Alloy Model

sig A { }
one sig Rel { r : A -> A }
fact reflexive { A<:iden in Rel.r }
fact transitive { (Rel.r).(Rel.r) in Rel.r }

assert rEqualsItsClosure { Rel.r = A<:*(Rel.r)}
check rEqualsItsClosure for 5

defines data domains
only “one” element in this domain

a field
containing a

binary relation
on Afacts are axioms

binary identity
relation on Acomposition of

n-ary relationsproperty to be verified
using the Alloy Analyzer

gives instructions to the Alloy
Analyzer on the sizes of data domains

reflexive-transitive
closure

Alloy: Relational Semantics
sig A { }
one sig Rel { r : A -> A }
fact reflexive { A<:iden in Rel.r }
fact transitive { (Rel.r).(Rel.r) in Rel.r }

assert rEqualsItsClosure { Rel.r = A<:*(Rel.r)}
check rEqualsItsClosure for 5

A is a set, unary
relationRel is a

singleton {Rel}

r is a
ternary relation
r in Rel x A

“.” is composition.
Rel.r

= {Rel}.{(Rel,a1,a2): (Rel,a1,a2) in r}
= {(a1,a2): (Rel,a1,a2) in r}.

The Alloy Analyzer

open rEqualsItsClosure

The Alloy Analyzer

For increasing scopes we get the following analysis
times (TO means > 48hours).

a cluster with Double Intel Dual Core Xeon processors running at 2.67 GHz. Each
node has 2 Gb of RAM. Nodes are connected through a low latency Infiniband
switch. The sequential cases are run in a single processor, using one core. Analysis
time is bounded to 48 hours, and timeouts (set at 48 hours) are marked TO.
Times are presented in the format hh:mm:ss. The following are case studies in
which the analysis yields no counterexamples:

1. Assertion rEqualsItsClosure.
2. Assertion StructureSufficientForPairReturnability from the model on

compositional binding in network domains presented in [14].
3. Assertion Ignore inv from the Alloy model (translated from Alloy 3 to Alloy

4) of the Mondex electronic purse, presented in [11].

We will also analyze Alloy models that produce a model as a result of running
a predicate. We will concentrate on models for generation of instances of Red-
Black trees.

Since tuning the configurations is important in achieving good analysis times,
in each case study we will show some of the used configurations. Simple config-
urations mean that not much tuning was necessary. As we will see, some case
studies require more configuration tuning than others. Depending on when the
experiments were run, the number of free nodes to perform experiments changed.

5.1 Analyzing Assertion rEqualsItsClosure

This example, presented in Fig. 1 is interesting due to its simplicity. The model
clearly exposes the limitations of the Alloy Analyzer. In Table 1 we compare the
analysis time between the Alloy Analyzer and ParAlloy under di�erent scopes
for signature A. In all these experiments we have used 128 cores. The strategy
used in the experiments is S3.

Notice that for scope 12, the analysis takes over 36 hours. For scope 13, the
analysis takes over 2 days.

8 9 10 11 12 13 14
Alloy Analyzer 00:00:04 00:05:22 00:58:58 04:05:41 36:34:13 TO TO
ParAlloy 00:00:07 00:00:20 00:00:54 00:02:30 00:12:02 01:14:56 03:59:41

Table 1. Analysis times for assertion rEqualsItsClosure.

The following configuration was used in ParAlloy for scope 14:

[L0 { C 60 11 45 }
L1 { C 400 5 45 }
L2 { C 1000 6 45 }
L3 { C 1200 7 45 H 1200 5 }
D { C 7200 7 45 H 7200 5 }]

The Alloy Analyzer
Alloy Model

KodKod

modelAlloy Analyzer KodKod

Propositional

formula in

CNF

SAT-Solver

UNSAT or

counterexample

KodKod (Torlak, Jackson)

For each relation symbol R, there are lower and upper
bounds lR and uR.

If a tuple t in lR, then t must occur in every interpretation
for R.

If t does not occur in uR, then t cannot occur in any
intepretation for R.

KodKod
Intuitively,

KodKod: From Relational to
Propositional

Let R and S be binary relations on a set A. Let A’s
scope be 3. Then:

R �

�

⇤
r11 r12 r13

r21 r22 r23

r31 r32 r33

⇥

⌅ S �

�

⇤
s11 s12 s13

s21 s22 s23

s31 s32 s33

⇥

⌅

propositional variables

rij is a propositional variable modeling wether
pair (i,j) is in R. Similar for sij.

KodKod: From Relational to
Propositional

For transposition (converse), we have:

S̆ �

�

⇤
s11 s21 s31

s12 s22 s32

s13 s23 s33

⇥

⌅

R + S̆ �

�

⇤
r11 � s11 r12 � s21 r13 � s31

r21 � s12 r22 � s22 r23 � s32

r31 � s13 r32 � s23 r33 � s33

⇥

⌅

For join (union), we have:

Relational terms are mapped
to matrices of
propositional

formulas

KodKod: From Relational to
Propositional

For equalities between terms:
R + S̆ = T

�

⇤
r11 � s11 r12 � s21 r13 � s31

r21 � s12 r22 � s22 r23 � s32

r31 � s13 r32 � s23 r33 � s33

⇥

⌅ =

�

⇤
t11 t12 t13
t21 t22 t23
t31 t32 t33

⇥

⌅
�

(r11 ⇤ s11 � t11) ⇥ (r12 ⇤ s21 � t12) ⇥ (r13 ⇤ s31 � t13) ⇥ . . .

�

It is
extended to
connectives

and
quantifiers

DynAlloy (Frias et al.)

Is an extension of Alloy to model behavior.

Semantics inspired on Dynamic logic.

Allows to define atomic and composite actions.

DynAlloy: Atomic Actions

action Increment[x : Int] {

pre { gt[x,0] }

post { x’ = add[x,1] }

}

Precondition
to be satisfied by input

Postcondition.
Primed variables denote values

in the final state

DynAlloy: Complex actions

A1 + A2 : Nondeterministic choice

A1 ; A2 : sequential composition

alpha ? : test action (alpha is an Alloy formula)

*A : reflexive transitive closure

DynAlloy: Analyzability
We can analyze partial correctness assertions within
domain scopes.

We bound the number of iterations of the *.
assertCorrectness IncrementTwiceAdds2[x : Int] {
	 pre = { gt[x,0] }
	 program = {

Increment[x];
Increment[x]

}
	 post = { x’ = add[x,2] }
}

Automated Analysis
of Java Code

Map the Java class hierarchy to the Alloy signatures
hierarchy.

Map Java atomic sentences to atomic actions.

Map Java programs to DynAlloy.

Java to DynAlloy: Atomic
The var clause allows to introduce local variables for

the action. The formal semantics of DynAlloy is thoroughly
discussed in [17].

Like Alloy, DynAlloy was designed with the aim of being
an analyzable language. While Alloy models include asserts,
DynAlloy models can include partial correctness [19] asser-
tions. An assertion of the form

assertCorrectness name [v1:T1,...,vk:Tk]{
pre = { alpha[v1,...,vk] }
program = { action[v1,...,vk] }
post = { beta[v1,...,vk,v1’,...,vk’] }

}

asserts that action name, when executed on states that satisfy
alpha, necessarily ends (if it terminates) in states that satisfy
beta. As in Alloy, a check statement of the form

check name for bounds

where bounds describes the necessary domain scopes, is
used by the DynAlloy2Alloy translator [16] in order to trans-
late the DynAlloy model and the assertion to an Alloy model
with an associated Alloy assertion. If instead we write a run
statement of the form

run name for bounds

the Alloy Analyzer will look for an execution of the ac-
tion satisfying the precondition and the postcondition. The
techniques behind the translation are described in [17]. It is
worth emphasizing that, as in Alloy, the analysis of DynAl-
loy models is partial, but complete within:

• the scopes imposed on data domains, and
• the number of unfoldings performed on the * (iteration)

operator.

2.1.3 The Translation
Translating Java code to DynAlloy requires translating class
definitions and methods to appropriate Dyn(Alloy) con-
structs. Certain aspects of the translation such as translating
methods of void return type, or handling of arrays and dy-
namic dispatch are left outside of this paper but are handled
by the translation.

We introduce in DynAlloy atomic actions that create ob-
jects, and atomic actions that modify an object’s field. We
denote by ObjectsC the unary relation (set) that contains
the set of objects from class C that are part of the heap at a
given point in time. This set can be modified by the effect of
an action.

In order to handle creation of objects of class C in DynAl-
loy, we introduce an atomic action called NewC, specified as
follows:

act NewC[o : C]
pre = { true }
post = {o’ !in ObjectsC and o’ in ObjectsC’}

Notice that the set ObjectsC should have been passed as a
parameter. In order to maintain notation simple, we keep this
state variable global.

An atomic action that sets the value of field “f” of object
“o”, is described in DynAlloy as follows:

act Setf[o : C, v : C’, f : C -> C’]
pre = { o in ObjectsC }
post = { f’ = f ++ (o -> v) }

From the class extension hierarchy in Java, a signature ex-
tension hierarchy is readily defined in DynAlloy. Translation
of a class to DynAlloy is immediate. A class declaration

class C {
C1 field1;
...
Ck fieldk;

}

produces a DynAlloy model that includes definitions for a
signature C and the necessary actions for creating objects
and modifying their fields:

sig C { }

NewC[o : C]

Setfield1[o : C, v : C1, field1 : C -> C1]
...
Setfieldk[o : C, v : Ck, fieldk : C -> Ck]

If a class C’ extends class C, a declaration of the form

sig C’ extends C { }

is added to the DynAlloy model. Notice that the translation
of the class hierarchy is straightforward due to the signature
extension mechanism provided by Alloy.

Given a method m in class C declared as

T m(T1 p1,..., Tk pk),

a new DynAlloy action header is produced:

act m[result : T, this : C, p1 : T1, ..., pk : Tk]. (1)

Notice that the return parameter is converted into a formal
parameter of the resulting action. This is because actions
come in a purely procedural flavor. Signature fields model-
ing class fields modified by the method are also included as
parameters of the DynAlloy action. Notice that this transla-
tion applies to class constructors as well (in the latter case,
parameter this is removed).

The translation of code (JavaToDynAlloy) then proceeds
in two steps. We first translate Java code to normalized Java
code, and then translate normalized Java code to DynAlloy
code.

Normalized Java code is (essentially) Java code in which:
• constructor and method calls only receive variables or

literals of primitive type as parameters, and

The var clause allows to introduce local variables for
the action. The formal semantics of DynAlloy is thoroughly
discussed in [17].

Like Alloy, DynAlloy was designed with the aim of being
an analyzable language. While Alloy models include asserts,
DynAlloy models can include partial correctness [19] asser-
tions. An assertion of the form

assertCorrectness name [v1:T1,...,vk:Tk]{
pre = { alpha[v1,...,vk] }
program = { action[v1,...,vk] }
post = { beta[v1,...,vk,v1’,...,vk’] }

}

asserts that action name, when executed on states that satisfy
alpha, necessarily ends (if it terminates) in states that satisfy
beta. As in Alloy, a check statement of the form

check name for bounds

where bounds describes the necessary domain scopes, is
used by the DynAlloy2Alloy translator [16] in order to trans-
late the DynAlloy model and the assertion to an Alloy model
with an associated Alloy assertion. If instead we write a run
statement of the form

run name for bounds

the Alloy Analyzer will look for an execution of the ac-
tion satisfying the precondition and the postcondition. The
techniques behind the translation are described in [17]. It is
worth emphasizing that, as in Alloy, the analysis of DynAl-
loy models is partial, but complete within:

• the scopes imposed on data domains, and
• the number of unfoldings performed on the * (iteration)

operator.

2.1.3 The Translation
Translating Java code to DynAlloy requires translating class
definitions and methods to appropriate Dyn(Alloy) con-
structs. Certain aspects of the translation such as translating
methods of void return type, or handling of arrays and dy-
namic dispatch are left outside of this paper but are handled
by the translation.

We introduce in DynAlloy atomic actions that create ob-
jects, and atomic actions that modify an object’s field. We
denote by ObjectsC the unary relation (set) that contains
the set of objects from class C that are part of the heap at a
given point in time. This set can be modified by the effect of
an action.

In order to handle creation of objects of class C in DynAl-
loy, we introduce an atomic action called NewC, specified as
follows:

act NewC[o : C]
pre = { true }
post = {o’ !in ObjectsC and o’ in ObjectsC’}

Notice that the set ObjectsC should have been passed as a
parameter. In order to maintain notation simple, we keep this
state variable global.

An atomic action that sets the value of field “f” of object
“o”, is described in DynAlloy as follows:

act Setf[o : C, v : C’, f : C -> C’]
pre = { o in ObjectsC }
post = { f’ = f ++ (o -> v) }

From the class extension hierarchy in Java, a signature ex-
tension hierarchy is readily defined in DynAlloy. Translation
of a class to DynAlloy is immediate. A class declaration

class C {
C1 field1;
...
Ck fieldk;

}

produces a DynAlloy model that includes definitions for a
signature C and the necessary actions for creating objects
and modifying their fields:

sig C { }

NewC[o : C]

Setfield1[o : C, v : C1, field1 : C -> C1]
...
Setfieldk[o : C, v : Ck, fieldk : C -> Ck]

If a class C’ extends class C, a declaration of the form

sig C’ extends C { }

is added to the DynAlloy model. Notice that the translation
of the class hierarchy is straightforward due to the signature
extension mechanism provided by Alloy.

Given a method m in class C declared as

T m(T1 p1,..., Tk pk),

a new DynAlloy action header is produced:

act m[result : T, this : C, p1 : T1, ..., pk : Tk]. (1)

Notice that the return parameter is converted into a formal
parameter of the resulting action. This is because actions
come in a purely procedural flavor. Signature fields model-
ing class fields modified by the method are also included as
parameters of the DynAlloy action. Notice that this transla-
tion applies to class constructors as well (in the latter case,
parameter this is removed).

The translation of code (JavaToDynAlloy) then proceeds
in two steps. We first translate Java code to normalized Java
code, and then translate normalized Java code to DynAlloy
code.

Normalized Java code is (essentially) Java code in which:
• constructor and method calls only receive variables or

literals of primitive type as parameters, and

tially quantified formulas have the form “some x : S | �”, where
x ranges over the elements in relation S, and � is a formula. Simi-
larly, universally quantified formulas have the form “all x : S | �”.

We can constrain atoms and fields in signatures using formu-
las. These axioms are called facts in Alloy. The following is, for
instance, a useful fact when modeling lists:

fact Acyclic { all l : List, n : LNode |
n in l.head.*next => n !in n.^next }

In order to ease notation, Alloy allows to define predicates and
functions. For instance, the following function length computes
the length of a list (using the Alloy function # to retrieve the size
of a set), while the binary predicate sameLength asserts that two
lists have the same length:

fun length[l : List] : Int {
#(l.head.*next - null) }

pred sameLength[l1, l2 : List]{
length[l1] = length[l2] }

One of the attractive features of Alloy is the possibility of
automatically analyzing Alloy models using the Alloy Analyzer
[15]. Therefore, models can include asserts to be checked by the
Alloy Analyzer. For instance, the assertion

assert sameLengthImpliesSameList {
all l1, l2 : List | sameLength[l1,l2]

implies l1 = l2 }

is an assertion that is clearly false. Adding a check command of the
form

check sameLengthImpliesSameList
for 3 List, 5 Data, 5 LNode

gives the Alloy Analyzer instructions about the scopes to be used
for domains. In this case, the Alloy Analyzer will use up to 3 lists,
and up to 5 objects of types Data and LNode in the counterexample.
We will briefly discuss the translation from Alloy models to SAT
problems in Section 2.3. For a thorough description of the Alloy
language, see [15].

2.2 A Brief Introduction To DynAlloy
DynAlloy [10] is an extension of Alloy conceived for modeling and
analyzing actions specified through pre and post-conditions written
in Alloy. From these atomic actions, new, more complex actions,
can be constructed using action combinators. If

A[x1:T1,...,xn:Tn]

and
B[x1:T1,...,xn:Tn,y1:T1,...,yn:Tn]

are Alloy formulas, an atomic action “atomic” is declared through
a triple

act atomic[x1:T1,...,xn:Tn]
pre = { A[x1,...,xn] }
post = { B[x1,...,xn,x1’,...,xn’] }

Primed variable xi
� in the post condition refers to the value

of variable xi upon action termination. As an example, action
varAssign below models assignment of a value to a variable:

act VarAssign[v1, v2 : C]
pre = { true }
post = { v1’ = v2 }

Since this atomic action is used often, we will use the more pro-
grammatic notation v1 := v2. Actions denote state (variable val-
uations) transitions. Atomic actions relate those pairs of valuations

⇥v, v�⇤ in which v satisfies the precondition, and v� satisfies the
postcondition. As a frame condition, those variables that do not oc-
cur primed in the postcondition are assumed to retain their original
value. Given actions A1 and A2, A1 + A2 stands for nondetermin-
istic choice of the actions. Action A1 ; A2 stands for sequential
composition. Action A1� stands for the reflexive-transitive closure
(finite iteration) of A1. Given an Alloy formula �, formula �? is a
test (also called assert) action, that returns the input state if it sat-
isfies �, and halts, otherwise. In order to keep DynAlloy actions
modular, DynAlloy programs can be defined using the following
syntax:

program progName [v1:T1,...,vk:Tk]
var [x1:T,...,xn:Tn]
{ action }

The var clause allows to introduce local variables for the action.
The formal semantics of DynAlloy is thoroughly discussed in [11].

Like Alloy, DynAlloy was designed with the aim of being an
analyzable language. Where Alloy models include asserts, DynAl-
loy models include partial correctness assertions. An assertion of
the form

assertCorrectness name [v1:T1,...,vk:Tk]{
pre = { alpha[v1,...,vk] }
program = { action[v1,...,vk] }
post = { beta[v1,...,vk,v1’,...,vk’] }

}

asserts that action name, when executed on states that satisfy
alpha, necessarily ends (if it terminates) in states that satisfy beta.

Notice that using the DynAlloy operators it is possible to trans-
late the Java control flow constructs as follows (predicates are Alloy
formulas):
T(while (pred) { stmt }) -> (pred? ; T(stmt))*;(!pred)?,
T(stmt1 ; stmt2) -> T(stmt1) ; T(stmt2),
T(if (pred) stmt1 else stmt2) ->

(pred?;T(stmt1)) + ((!pred)?;T(stmt2)).

As in Alloy, a check statement of the form

check name for scopes

is used by the DynAlloyToAlloyTranslator [10] in order to translate
the DynAlloy model and the assertion to an Alloy model with its
associated Alloy assertion. If instead we write a run statement of
the form

run program for scopes

the Alloy Analyzer will look for an execution of the given program.
The techniques behind the translation are described in [11]. It is
worth emphasizing that, as in Alloy, the analysis of DynAlloy
models is partial, but complete within the scopes constraining the
sizes of data domains and the number of unrolls performed on the
* (iteration) operator.

2.3 The Translation Through an Example
Let us consider the following JML-annotated classes for list nodes
and singly linked lists.
public class LNode extends Object {

LNode next;
int key;

}

public class List extends Object {
/*@
@ invariant (\forall LNode n;
@ \reach(this.head, LNode, next).has(n);
@ !\reach(n.next, LNode, next).has(n));
@*/

(abbreviated v1 := v2)

Java to DynAlloy: Code
• navigation expressions of the form e1.e2 (where e2 is a

class field or a method call), are such that expression e1

is either a variable or a literal of primitive type.

Our translation of Java code to normalized Java code
does not differ in major ways from the one implemented,
for instance, in [31].

We proceed now to the translation of simple statements.

C v = new C(e1,...,ek) -->
NewC(v) ; C[v, e1,...,ek],

where action C is the DynAlloy version of the appropriate
class constructor.

In case expression e does not include a dereference (think
of e being for instance a variable or a literal of primitive data
type), we translate

v = e --> VarAssign[v, e].

If expression e has the form e1.e2, we know that e1

is either a variable or a literal of primitive data type. We
consider two possibilities for e2:

• If e2 is a class field f , then

v = e1.f --> VarAssign[v, e1.f].

• If e2 is a method call m(p1, ..., pk), then we know that pa-
rameters p1, ..., pk are either variables or literals of prim-
itive data type. The translation guarantees the existence
of a DynAlloy action m whose header has the form

act m[result:T, this:C, p1:T1,..., pk:Tk].

The translation then maps

v = e1.m(p1,...,pk) -->
m[v, e1, p1,..., pk].

In order to translate an assignment statement of the form
v.f = e, we proceed as in the case of assignment to a
variable. If expression e is either a variable or a literal of
primitive data type,

v.f = e --> Setf[v, e, f].

If expression e has the form e1.e2, we know that e1 is either
a variable or a literal of primitive data type. We consider two
possibilities for e2:

• If e2 is a class field g, then

v.f = e1.g --> Setf[v, e1.g, f].

• If e2 is a method call m(p1, ..., pk), then we know that pa-
rameters p1, ..., pk are either variables or literals of prim-
itive data type. The translation guarantees the existence
of a DynAlloy action m whose header has the form

act m[result:T, this:C, p1:T1,..., pk:Tk].

The translation then maps

v.f = e1.m(p1,...,pk) -->
m[r, e1, p1,..., pk] ; Setf[v, r, f].

Return statements of the form “return e” (where e is an
expression), must occur in the body of a Java method m
of non-void return type. According to (1), the translation of
method m guarantees the existence of DynAlloy action m
whose header includes an (ouput) parameter result . In the
translation of the body of m, we translate

return e --> VarAssign[result, e].

For more complex program constructs, the translation is
defined as follows:

while (pred) {stmt} ⇤⇥ �(pred?; stmt); (!pred)?,
stmt1 ; stmt2 ⇤⇥ stmt1; stmt2,
if (pred) stmt1 else stmt2 ⇤⇥ (pred?; stmt1) +

((!pred)?; stmt2) ,

where the boldface stmt, stmt1 and stmt2 stand for the re-
cursive application of the translation to the statements stmt,
stmt1 and stmt2, respectively. Predicates are translated to Al-
loy formulas using the translation to be presented in Section
2.2.

2.2 Translating Annotations to Alloy
In this section we describe the translation of annotations to
Alloy. In order to do so, we will first present in Section 2.2.1
a brief description of the JML-like annotation language we
use. Finally, we present the translation in Section 2.2.2.

2.2.1 The Java Modeling Language
The Java Modeling Language (JML) [27] is a specification
language that allows to write behavioral specifications of
Java modules using requires/ensures assertions and invari-
ants that mix an expressive logical language, with Java ex-
pressions.

We present in Fig. 5 a JML annotated module for the class
of singly linked lists, including a method for searching for an
element in a list (method find). It uses a classLNode (not in-
cluded) characterizing list nodes with fields next and val.
Text enclosed within /* and */ constitutes a comment in
Java. The JML compiler [8] takes text enclosed between /*@
and @*/ as JML annotations. Notice then that the Java com-
piler will consider JML annotations as comments. Therefore,
JML annotated code can be directly compiled by the Java
compiler.

An important feature of JML is that it enables modular
reasoning, which is essential for the scalability of methods
as the one used in this article and elsewhere [12; 18].

The model in Fig. 5 includes an instance invariant, a prop-
erty that must be established by constructors and preserved
by methods. In this case, the invariant requires lists to be
acyclic. The class provides a method find that has no pre-
conditions (no requires statements present), yet has a post-
condition (the ensures statement) that characterizes the be-

• navigation expressions of the form e1.e2 (where e2 is a
class field or a method call), are such that expression e1

is either a variable or a literal of primitive type.

Our translation of Java code to normalized Java code
does not differ in major ways from the one implemented,
for instance, in [31].

We proceed now to the translation of simple statements.

C v = new C(e1,...,ek) -->
NewC(v) ; C[v, e1,...,ek],

where action C is the DynAlloy version of the appropriate
class constructor.

In case expression e does not include a dereference (think
of e being for instance a variable or a literal of primitive data
type), we translate

v = e --> VarAssign[v, e].

If expression e has the form e1.e2, we know that e1

is either a variable or a literal of primitive data type. We
consider two possibilities for e2:

• If e2 is a class field f , then

v = e1.f --> VarAssign[v, e1.f].

• If e2 is a method call m(p1, ..., pk), then we know that pa-
rameters p1, ..., pk are either variables or literals of prim-
itive data type. The translation guarantees the existence
of a DynAlloy action m whose header has the form

act m[result:T, this:C, p1:T1,..., pk:Tk].

The translation then maps

v = e1.m(p1,...,pk) -->
m[v, e1, p1,..., pk].

In order to translate an assignment statement of the form
v.f = e, we proceed as in the case of assignment to a
variable. If expression e is either a variable or a literal of
primitive data type,

v.f = e --> Setf[v, e, f].

If expression e has the form e1.e2, we know that e1 is either
a variable or a literal of primitive data type. We consider two
possibilities for e2:

• If e2 is a class field g, then

v.f = e1.g --> Setf[v, e1.g, f].

• If e2 is a method call m(p1, ..., pk), then we know that pa-
rameters p1, ..., pk are either variables or literals of prim-
itive data type. The translation guarantees the existence
of a DynAlloy action m whose header has the form

act m[result:T, this:C, p1:T1,..., pk:Tk].

The translation then maps

v.f = e1.m(p1,...,pk) -->
m[r, e1, p1,..., pk] ; Setf[v, r, f].

Return statements of the form “return e” (where e is an
expression), must occur in the body of a Java method m
of non-void return type. According to (1), the translation of
method m guarantees the existence of DynAlloy action m
whose header includes an (ouput) parameter result . In the
translation of the body of m, we translate

return e --> VarAssign[result, e].

For more complex program constructs, the translation is
defined as follows:

while (pred) {stmt} ⇤⇥ �(pred?; stmt); (!pred)?,
stmt1 ; stmt2 ⇤⇥ stmt1; stmt2,
if (pred) stmt1 else stmt2 ⇤⇥ (pred?; stmt1) +

((!pred)?; stmt2) ,

where the boldface stmt, stmt1 and stmt2 stand for the re-
cursive application of the translation to the statements stmt,
stmt1 and stmt2, respectively. Predicates are translated to Al-
loy formulas using the translation to be presented in Section
2.2.

2.2 Translating Annotations to Alloy
In this section we describe the translation of annotations to
Alloy. In order to do so, we will first present in Section 2.2.1
a brief description of the JML-like annotation language we
use. Finally, we present the translation in Section 2.2.2.

2.2.1 The Java Modeling Language
The Java Modeling Language (JML) [27] is a specification
language that allows to write behavioral specifications of
Java modules using requires/ensures assertions and invari-
ants that mix an expressive logical language, with Java ex-
pressions.

We present in Fig. 5 a JML annotated module for the class
of singly linked lists, including a method for searching for an
element in a list (method find). It uses a classLNode (not in-
cluded) characterizing list nodes with fields next and val.
Text enclosed within /* and */ constitutes a comment in
Java. The JML compiler [8] takes text enclosed between /*@
and @*/ as JML annotations. Notice then that the Java com-
piler will consider JML annotations as comments. Therefore,
JML annotated code can be directly compiled by the Java
compiler.

An important feature of JML is that it enables modular
reasoning, which is essential for the scalability of methods
as the one used in this article and elsewhere [12; 18].

The model in Fig. 5 includes an instance invariant, a prop-
erty that must be established by constructors and preserved
by methods. In this case, the invariant requires lists to be
acyclic. The class provides a method find that has no pre-
conditions (no requires statements present), yet has a post-
condition (the ensures statement) that characterizes the be-

• navigation expressions of the form e1.e2 (where e2 is a
class field or a method call), are such that expression e1

is either a variable or a literal of primitive type.

Our translation of Java code to normalized Java code
does not differ in major ways from the one implemented,
for instance, in [31].

We proceed now to the translation of simple statements.

C v = new C(e1,...,ek) -->
NewC(v) ; C[v, e1,...,ek],

where action C is the DynAlloy version of the appropriate
class constructor.

In case expression e does not include a dereference (think
of e being for instance a variable or a literal of primitive data
type), we translate

v = e --> VarAssign[v, e].

If expression e has the form e1.e2, we know that e1

is either a variable or a literal of primitive data type. We
consider two possibilities for e2:

• If e2 is a class field f , then

v = e1.f --> VarAssign[v, e1.f].

• If e2 is a method call m(p1, ..., pk), then we know that pa-
rameters p1, ..., pk are either variables or literals of prim-
itive data type. The translation guarantees the existence
of a DynAlloy action m whose header has the form

act m[result:T, this:C, p1:T1,..., pk:Tk].

The translation then maps

v = e1.m(p1,...,pk) -->
m[v, e1, p1,..., pk].

In order to translate an assignment statement of the form
v.f = e, we proceed as in the case of assignment to a
variable. If expression e is either a variable or a literal of
primitive data type,

v.f = e --> Setf[v, e, f].

If expression e has the form e1.e2, we know that e1 is either
a variable or a literal of primitive data type. We consider two
possibilities for e2:

• If e2 is a class field g, then

v.f = e1.g --> Setf[v, e1.g, f].

• If e2 is a method call m(p1, ..., pk), then we know that pa-
rameters p1, ..., pk are either variables or literals of prim-
itive data type. The translation guarantees the existence
of a DynAlloy action m whose header has the form

act m[result:T, this:C, p1:T1,..., pk:Tk].

The translation then maps

v.f = e1.m(p1,...,pk) -->
m[r, e1, p1,..., pk] ; Setf[v, r, f].

Return statements of the form “return e” (where e is an
expression), must occur in the body of a Java method m
of non-void return type. According to (1), the translation of
method m guarantees the existence of DynAlloy action m
whose header includes an (ouput) parameter result . In the
translation of the body of m, we translate

return e --> VarAssign[result, e].

For more complex program constructs, the translation is
defined as follows:

while (pred) {stmt} ⇤⇥ �(pred?; stmt); (!pred)?,
stmt1 ; stmt2 ⇤⇥ stmt1; stmt2,
if (pred) stmt1 else stmt2 ⇤⇥ (pred?; stmt1) +

((!pred)?; stmt2) ,

where the boldface stmt, stmt1 and stmt2 stand for the re-
cursive application of the translation to the statements stmt,
stmt1 and stmt2, respectively. Predicates are translated to Al-
loy formulas using the translation to be presented in Section
2.2.

2.2 Translating Annotations to Alloy
In this section we describe the translation of annotations to
Alloy. In order to do so, we will first present in Section 2.2.1
a brief description of the JML-like annotation language we
use. Finally, we present the translation in Section 2.2.2.

2.2.1 The Java Modeling Language
The Java Modeling Language (JML) [27] is a specification
language that allows to write behavioral specifications of
Java modules using requires/ensures assertions and invari-
ants that mix an expressive logical language, with Java ex-
pressions.

We present in Fig. 5 a JML annotated module for the class
of singly linked lists, including a method for searching for an
element in a list (method find). It uses a classLNode (not in-
cluded) characterizing list nodes with fields next and val.
Text enclosed within /* and */ constitutes a comment in
Java. The JML compiler [8] takes text enclosed between /*@
and @*/ as JML annotations. Notice then that the Java com-
piler will consider JML annotations as comments. Therefore,
JML annotated code can be directly compiled by the Java
compiler.

An important feature of JML is that it enables modular
reasoning, which is essential for the scalability of methods
as the one used in this article and elsewhere [12; 18].

The model in Fig. 5 includes an instance invariant, a prop-
erty that must be established by constructors and preserved
by methods. In this case, the invariant requires lists to be
acyclic. The class provides a method find that has no pre-
conditions (no requires statements present), yet has a post-
condition (the ensures statement) that characterizes the be-

Java to DynAlloy: Example

tially quantified formulas have the form “some x : S | �”, where
x ranges over the elements in relation S, and � is a formula. Simi-
larly, universally quantified formulas have the form “all x : S | �”.

We can constrain atoms and fields in signatures using formu-
las. These axioms are called facts in Alloy. The following is, for
instance, a useful fact when modeling lists:

fact Acyclic { all l : List, n : LNode |
n in l.head.*next => n !in n.^next }

In order to ease notation, Alloy allows to define predicates and
functions. For instance, the following function length computes
the length of a list (using the Alloy function # to retrieve the size
of a set), while the binary predicate sameLength asserts that two
lists have the same length:

fun length[l : List] : Int {
#(l.head.*next - null) }

pred sameLength[l1, l2 : List]{
length[l1] = length[l2] }

One of the attractive features of Alloy is the possibility of
automatically analyzing Alloy models using the Alloy Analyzer
[15]. Therefore, models can include asserts to be checked by the
Alloy Analyzer. For instance, the assertion

assert sameLengthImpliesSameList {
all l1, l2 : List | sameLength[l1,l2]

implies l1 = l2 }

is an assertion that is clearly false. Adding a check command of the
form

check sameLengthImpliesSameList
for 3 List, 5 Data, 5 LNode

gives the Alloy Analyzer instructions about the scopes to be used
for domains. In this case, the Alloy Analyzer will use up to 3 lists,
and up to 5 objects of types Data and LNode in the counterexample.
We will briefly discuss the translation from Alloy models to SAT
problems in Section 2.3. For a thorough description of the Alloy
language, see [15].

2.2 A Brief Introduction To DynAlloy
DynAlloy [10] is an extension of Alloy conceived for modeling and
analyzing actions specified through pre and post-conditions written
in Alloy. From these atomic actions, new, more complex actions,
can be constructed using action combinators. If

A[x1:T1,...,xn:Tn]

and
B[x1:T1,...,xn:Tn,y1:T1,...,yn:Tn]

are Alloy formulas, an atomic action “atomic” is declared through
a triple

act atomic[x1:T1,...,xn:Tn]
pre = { A[x1,...,xn] }
post = { B[x1,...,xn,x1’,...,xn’] }

Primed variable xi
� in the post condition refers to the value

of variable xi upon action termination. As an example, action
varAssign below models assignment of a value to a variable:

act VarAssign[v1, v2 : C]
pre = { true }
post = { v1’ = v2 }

Since this atomic action is used often, we will use the more pro-
grammatic notation v1 := v2. Actions denote state (variable val-
uations) transitions. Atomic actions relate those pairs of valuations

⇥v, v�⇤ in which v satisfies the precondition, and v� satisfies the
postcondition. As a frame condition, those variables that do not oc-
cur primed in the postcondition are assumed to retain their original
value. Given actions A1 and A2, A1 + A2 stands for nondetermin-
istic choice of the actions. Action A1 ; A2 stands for sequential
composition. Action A1� stands for the reflexive-transitive closure
(finite iteration) of A1. Given an Alloy formula �, formula �? is a
test (also called assert) action, that returns the input state if it sat-
isfies �, and halts, otherwise. In order to keep DynAlloy actions
modular, DynAlloy programs can be defined using the following
syntax:

program progName [v1:T1,...,vk:Tk]
var [x1:T,...,xn:Tn]
{ action }

The var clause allows to introduce local variables for the action.
The formal semantics of DynAlloy is thoroughly discussed in [11].

Like Alloy, DynAlloy was designed with the aim of being an
analyzable language. Where Alloy models include asserts, DynAl-
loy models include partial correctness assertions. An assertion of
the form

assertCorrectness name [v1:T1,...,vk:Tk]{
pre = { alpha[v1,...,vk] }
program = { action[v1,...,vk] }
post = { beta[v1,...,vk,v1’,...,vk’] }

}

asserts that action name, when executed on states that satisfy
alpha, necessarily ends (if it terminates) in states that satisfy beta.

Notice that using the DynAlloy operators it is possible to trans-
late the Java control flow constructs as follows (predicates are Alloy
formulas):
T(while (pred) { stmt }) -> (pred? ; T(stmt))*;(!pred)?,
T(stmt1 ; stmt2) -> T(stmt1) ; T(stmt2),
T(if (pred) stmt1 else stmt2) ->

(pred?;T(stmt1)) + ((!pred)?;T(stmt2)).

As in Alloy, a check statement of the form

check name for scopes

is used by the DynAlloyToAlloyTranslator [10] in order to translate
the DynAlloy model and the assertion to an Alloy model with its
associated Alloy assertion. If instead we write a run statement of
the form

run program for scopes

the Alloy Analyzer will look for an execution of the given program.
The techniques behind the translation are described in [11]. It is
worth emphasizing that, as in Alloy, the analysis of DynAlloy
models is partial, but complete within the scopes constraining the
sizes of data domains and the number of unrolls performed on the
* (iteration) operator.

2.3 The Translation Through an Example
Let us consider the following JML-annotated classes for list nodes
and singly linked lists.
public class LNode extends Object {

LNode next;
int key;

}

public class List extends Object {
/*@
@ invariant (\forall LNode n;
@ \reach(this.head, LNode, next).has(n);
@ !\reach(n.next, LNode, next).has(n));
@*/

LNode head;

/*@
@ ensures (\exists LNode n;
@ \reach(this.head, LNode, next).has(n) &&
@ n.val==x) <==> \result == true;
@*/
boolean find(int x) {

LNode current;
boolean output;
current = this.head;
output = false;
while (output==false && current!=null) {

if (current.val == x) {
output = true; }

current = current.next;
}
return output;

}
}

Prior to the translation of annotated code, we will model the
Java class hierarchy in Alloy. The Alloy signature hierarchy for the
example is given by

sig Object {}
one sig null {}
sig List extends Object {}
sig LNode extends Object {}
sig Throwable extends Object {}
sig Exception extends Throwable {}
sig RuntimeException extends Exception {}
one sig NullPointerException extends RuntimeException {}

Notice that signatures List and LNode do not have fields. In
order to handle aliasing appropriately [16], former Java class fields
will be (modifiable) relational parameters of the DynAlloy actions
and programs. Keep in mind that these relations are the ones for
which we will find bounds in Section 3. Also, in the example we
show how exceptions are modeled within the class hierarchy.

Given a Java method with requires/ensures annotations (as
for example method find – where the absent requires clause
means there are no constraints on the input) two Alloy predicates
requires find and ensures find are introduced in the Dy-
nAlloy model. Moreover, an Alloy predicate List Inv is used to
model the class invariant. The (fully automatically generated) pred-
icates are:

pred requires_find[]{ True[] }

pred ensures_find[
this_L : List,
head : List -> one (LNode + null),
next : LNode -> one (LNode + null),
key : LNode -> one Int,
x : Int,
result : Boolean]{

(some n : LNode | n in this_L.head.*next && n.key=x)
iff result=True[] }

pred List_Inv[
this_L : List,
head : List -> one (LNode + null),
next : LNode -> one (LNode + null)]{

all n : LNode | n in this_L.head.*next implies
!(n in n.next.*next) }

While translation JMLToAlloyTranslation is mostly straightfor-
ward, the following points need to be clarified. While “this” has a
clear meaning in the context of Java and JML, in DynAlloy we use
a variable this L that must be passed as a parameter. Also, expres-
sion \reach(l, T, [f1,...,fk]) denotes the objects of type T

reachable from location l, using fields f1,...,fk. This is an ex-
tension of the JML syntax that simplifies modeling. It translates to
the Alloy expression l.*(f1+...+fk):>T (where e:>T restricts
the range of expression e to signature T).

Translation of Java code to DynAlloy is also straightforward.
Control flow constructs have already been translated in Section
2.2. Besides action VarAssign (see Section 2.2), we introduce an
action NewC for creation of objects of class C, as well as an action
Setf that modifies the f-value of an object o (actions NewC and
Setf will not be used in the example).

act NewC[o : C]
pre = { true }
post = {o’ !in ObjectsC and o’ in ObjectsC’}

Notice that the set ObjectsC should have been passed as a parame-
ter. In order to maintain notation simple, we keep this state variable
global.

act Setf[o : C, v : C’, f : C -> C’]
pre = { o in ObjectsC }
post = { f’ = f ++ (o -> v) }

The translation of method find to DynAlloy is given by:
program find[

this_L:List, result:Boolean, x:Int,
head:List->one(LNode+null),
next:LNode->one(LNode+null),
key:LNode->one Int]{

var [current:LNode, output:Boolean]
current := this_L.head;
output := False[];
while (output=False[] && current!=null) {

if (current.key = x) {
output := True[]

};
current := current.next;

}
result := output

}

Notice that so far we have followed the architecture of TACO
presented in Fig. 2. Once the contracts have been translated to Alloy
and the methods to DynAlloy, we join the two translations into
a single DynAlloy model that comprises the typing information
(signatures), includes the atomic actions (for instance NewC), and
also incorporates the DynAlloy partial correctness assertion. Since
there is a class invariant, besides checking that the contract is
satisfied we also check that the invariant is preserved.
assertCorrectness find[this_L:List, result:Boolean,

x:Int,
head : List -> one (LNode + null),
next : LNode -> one (LNode + null),
key : LNode -> one Int]{

pre { List_Inv[this_L, head, next] }
program { find[this_L, result, x, head, next, key] }
post {ensures_find[this_L,head,next,key,x,result’]

&& List_Inv[this_L, head, next] }
}

Although we are not making any explicit mention to exceptions in
the code translation, we check runtime exceptions by default. The
code then gets instrumented for detecting uncaught exceptions.

DynAlloy models are translated to Alloy models using the
DynAlloyToAlloyTranslator. We will not discuss this translation
which has been already discussed in [11]. Instead, we will com-
ment on the translation from Alloy models to propositional formu-
las, since this will allow us to show in which ways the technique
we will present in Section 3 fits in the code analysis process.

Alloy models are translated to the intermediate language Kod-
Kod [21]. A distinguishing feature of KodKod is that it allows to

LNode head;

/*@
@ ensures (\exists LNode n;
@ \reach(this.head, LNode, next).has(n) &&
@ n.val==x) <==> \result == true;
@*/
boolean find(int x) {

LNode current;
boolean output;
current = this.head;
output = false;
while (output==false && current!=null) {

if (current.val == x) {
output = true; }

current = current.next;
}
return output;

}
}

Prior to the translation of annotated code, we will model the
Java class hierarchy in Alloy. The Alloy signature hierarchy for the
example is given by

sig Object {}
one sig null {}
sig List extends Object {}
sig LNode extends Object {}
sig Throwable extends Object {}
sig Exception extends Throwable {}
sig RuntimeException extends Exception {}
one sig NullPointerException extends RuntimeException {}

Notice that signatures List and LNode do not have fields. In
order to handle aliasing appropriately [16], former Java class fields
will be (modifiable) relational parameters of the DynAlloy actions
and programs. Keep in mind that these relations are the ones for
which we will find bounds in Section 3. Also, in the example we
show how exceptions are modeled within the class hierarchy.

Given a Java method with requires/ensures annotations (as
for example method find – where the absent requires clause
means there are no constraints on the input) two Alloy predicates
requires find and ensures find are introduced in the Dy-
nAlloy model. Moreover, an Alloy predicate List Inv is used to
model the class invariant. The (fully automatically generated) pred-
icates are:

pred requires_find[]{ True[] }

pred ensures_find[
this_L : List,
head : List -> one (LNode + null),
next : LNode -> one (LNode + null),
key : LNode -> one Int,
x : Int,
result : Boolean]{

(some n : LNode | n in this_L.head.*next && n.key=x)
iff result=True[] }

pred List_Inv[
this_L : List,
head : List -> one (LNode + null),
next : LNode -> one (LNode + null)]{

all n : LNode | n in this_L.head.*next implies
!(n in n.next.*next) }

While translation JMLToAlloyTranslation is mostly straightfor-
ward, the following points need to be clarified. While “this” has a
clear meaning in the context of Java and JML, in DynAlloy we use
a variable this L that must be passed as a parameter. Also, expres-
sion \reach(l, T, [f1,...,fk]) denotes the objects of type T

reachable from location l, using fields f1,...,fk. This is an ex-
tension of the JML syntax that simplifies modeling. It translates to
the Alloy expression l.*(f1+...+fk):>T (where e:>T restricts
the range of expression e to signature T).

Translation of Java code to DynAlloy is also straightforward.
Control flow constructs have already been translated in Section
2.2. Besides action VarAssign (see Section 2.2), we introduce an
action NewC for creation of objects of class C, as well as an action
Setf that modifies the f-value of an object o (actions NewC and
Setf will not be used in the example).

act NewC[o : C]
pre = { true }
post = {o’ !in ObjectsC and o’ in ObjectsC’}

Notice that the set ObjectsC should have been passed as a parame-
ter. In order to maintain notation simple, we keep this state variable
global.

act Setf[o : C, v : C’, f : C -> C’]
pre = { o in ObjectsC }
post = { f’ = f ++ (o -> v) }

The translation of method find to DynAlloy is given by:
program find[

this_L:List, result:Boolean, x:Int,
head:List->one(LNode+null),
next:LNode->one(LNode+null),
key:LNode->one Int]{

var [current:LNode, output:Boolean]
current := this_L.head;
output := False[];
while (output=False[] && current!=null) {

if (current.key = x) {
output := True[]

};
current := current.next;

}
result := output

}

Notice that so far we have followed the architecture of TACO
presented in Fig. 2. Once the contracts have been translated to Alloy
and the methods to DynAlloy, we join the two translations into
a single DynAlloy model that comprises the typing information
(signatures), includes the atomic actions (for instance NewC), and
also incorporates the DynAlloy partial correctness assertion. Since
there is a class invariant, besides checking that the contract is
satisfied we also check that the invariant is preserved.
assertCorrectness find[this_L:List, result:Boolean,

x:Int,
head : List -> one (LNode + null),
next : LNode -> one (LNode + null),
key : LNode -> one Int]{

pre { List_Inv[this_L, head, next] }
program { find[this_L, result, x, head, next, key] }
post {ensures_find[this_L,head,next,key,x,result’]

&& List_Inv[this_L, head, next] }
}

Although we are not making any explicit mention to exceptions in
the code translation, we check runtime exceptions by default. The
code then gets instrumented for detecting uncaught exceptions.

DynAlloy models are translated to Alloy models using the
DynAlloyToAlloyTranslator. We will not discuss this translation
which has been already discussed in [11]. Instead, we will com-
ment on the translation from Alloy models to propositional formu-
las, since this will allow us to show in which ways the technique
we will present in Section 3 fits in the code analysis process.

Alloy models are translated to the intermediate language Kod-
Kod [21]. A distinguishing feature of KodKod is that it allows to

Invariant: all instances
must satisfy it.

“Lists are acyclic structures”.
JML syntax.

Ensures: property to be
established by the method.

“result = true iff x is the value of
a node in the list”

Class Hierarchy and Code
 boolean find(int x) {
 LNode current;
 boolean output;
 current = this.head;
 output = false;
 while (output==false &&
 current!=null) {
 if (current.val == x) {
 output = true; }
 current = current.next;
 }
 return output;

program find[
 this_L:List, result:Boolean, x:Int,
 head:List->one(LNode+null),
 next:LNode->one(LNode+null),
 val:LNode->one Int]{
var [current:LNode, output:Boolean]
 current := this_L.head;
 output := False[];
 while (output=False[] && current!=null) {
 if (current.val = x) {
 output := True[]
 };
 current := current.next;
 }
 result := output
}

sig Object {}
one sig null {}
sig List extends Object {}
sig LNode extends Object {}
sig Throwable extends Object {}
sig Exception extends Throwable {}
sig RuntimeException extends Exception {}
one sig NullPointerException extends RuntimeException {}

Java to DynAlloy:
Checking Correctness

LNode head;

/*@
@ ensures (\exists LNode n;
@ \reach(this.head, LNode, next).has(n) &&
@ n.val==x) <==> \result == true;
@*/
boolean find(int x) {

LNode current;
boolean output;
current = this.head;
output = false;
while (output==false && current!=null) {

if (current.val == x) {
output = true; }

current = current.next;
}
return output;

}
}

Prior to the translation of annotated code, we will model the
Java class hierarchy in Alloy. The Alloy signature hierarchy for the
example is given by

sig Object {}
one sig null {}
sig List extends Object {}
sig LNode extends Object {}
sig Throwable extends Object {}
sig Exception extends Throwable {}
sig RuntimeException extends Exception {}
one sig NullPointerException extends RuntimeException {}

Notice that signatures List and LNode do not have fields. In
order to handle aliasing appropriately [16], former Java class fields
will be (modifiable) relational parameters of the DynAlloy actions
and programs. Keep in mind that these relations are the ones for
which we will find bounds in Section 3. Also, in the example we
show how exceptions are modeled within the class hierarchy.

Given a Java method with requires/ensures annotations (as
for example method find – where the absent requires clause
means there are no constraints on the input) two Alloy predicates
requires find and ensures find are introduced in the Dy-
nAlloy model. Moreover, an Alloy predicate List Inv is used to
model the class invariant. The (fully automatically generated) pred-
icates are:

pred requires_find[]{ True[] }

pred ensures_find[
this_L : List,
head : List -> one (LNode + null),
next : LNode -> one (LNode + null),
key : LNode -> one Int,
x : Int,
result : Boolean]{

(some n : LNode | n in this_L.head.*next && n.key=x)
iff result=True[] }

pred List_Inv[
this_L : List,
head : List -> one (LNode + null),
next : LNode -> one (LNode + null)]{

all n : LNode | n in this_L.head.*next implies
!(n in n.next.*next) }

While translation JMLToAlloyTranslation is mostly straightfor-
ward, the following points need to be clarified. While “this” has a
clear meaning in the context of Java and JML, in DynAlloy we use
a variable this L that must be passed as a parameter. Also, expres-
sion \reach(l, T, [f1,...,fk]) denotes the objects of type T

reachable from location l, using fields f1,...,fk. This is an ex-
tension of the JML syntax that simplifies modeling. It translates to
the Alloy expression l.*(f1+...+fk):>T (where e:>T restricts
the range of expression e to signature T).

Translation of Java code to DynAlloy is also straightforward.
Control flow constructs have already been translated in Section
2.2. Besides action VarAssign (see Section 2.2), we introduce an
action NewC for creation of objects of class C, as well as an action
Setf that modifies the f-value of an object o (actions NewC and
Setf will not be used in the example).

act NewC[o : C]
pre = { true }
post = {o’ !in ObjectsC and o’ in ObjectsC’}

Notice that the set ObjectsC should have been passed as a parame-
ter. In order to maintain notation simple, we keep this state variable
global.

act Setf[o : C, v : C’, f : C -> C’]
pre = { o in ObjectsC }
post = { f’ = f ++ (o -> v) }

The translation of method find to DynAlloy is given by:
program find[

this_L:List, result:Boolean, x:Int,
head:List->one(LNode+null),
next:LNode->one(LNode+null),
key:LNode->one Int]{

var [current:LNode, output:Boolean]
current := this_L.head;
output := False[];
while (output=False[] && current!=null) {

if (current.key = x) {
output := True[]

};
current := current.next;

}
result := output

}

Notice that so far we have followed the architecture of TACO
presented in Fig. 2. Once the contracts have been translated to Alloy
and the methods to DynAlloy, we join the two translations into
a single DynAlloy model that comprises the typing information
(signatures), includes the atomic actions (for instance NewC), and
also incorporates the DynAlloy partial correctness assertion. Since
there is a class invariant, besides checking that the contract is
satisfied we also check that the invariant is preserved.
assertCorrectness find[this_L:List, result:Boolean,

x:Int,
head : List -> one (LNode + null),
next : LNode -> one (LNode + null),
key : LNode -> one Int]{

pre { List_Inv[this_L, head, next] }
program { find[this_L, result, x, head, next, key] }
post {ensures_find[this_L,head,next,key,x,result’]

&& List_Inv[this_L, head, next] }
}

Although we are not making any explicit mention to exceptions in
the code translation, we check runtime exceptions by default. The
code then gets instrumented for detecting uncaught exceptions.

DynAlloy models are translated to Alloy models using the
DynAlloyToAlloyTranslator. We will not discuss this translation
which has been already discussed in [11]. Instead, we will com-
ment on the translation from Alloy models to propositional formu-
las, since this will allow us to show in which ways the technique
we will present in Section 3 fits in the code analysis process.

Alloy models are translated to the intermediate language Kod-
Kod [21]. A distinguishing feature of KodKod is that it allows to

assertCorrectness find[this_L:List, result:Boolean,
 x:Int,
 head : List -> one (LNode + null),
 next : LNode -> one (LNode + null),
 key : LNode -> one Int]{
pre { List_Inv[this_L, head, next] }
program { find[this_L, result, x, head, next, key] }
post {ensures_find[this_L,head,next,key,x,result']
 && List_Inv[this_L, head, next] }
}

check find for 5

TACO: Efficient Analysis of
Java Code

TACO: Translation of Annotated COde.

Uses an efficient technique for reducing KodKod upper
bounds.

Analysis speeds up by several orders of magnitude.

Experiments show that it improves over state-of-the-art
tools based on model checking or SMT-solving.

A Sample Problem

12

146

1

83 15

1. Binary tree,
2. Ordered,
3. Balanced: |h(left(n)) - h(right(n))| <= 1

Generating an instance of AVL-tree.

Technique: Fully Automated
Bound Refinement

To find an instance the SAT-solver attempts to
find (using strategies for pruning the state
space) a tree thiz, and functions for fields root,
h, left and right such that the invariant is
satisfied.

For AVL trees...

Regarding field h, notice that all leaves have h = 0.
Besides, since these are balanced trees, for up to 7
nodes no node satisfies h(n) greater than 3.

h=0 h=1

h=0

h=2

h=1

h=0

h=0

h=3

h=2

h=1

h=1

h=0

h=0 h=0

For AVL trees...

Since nodes are objects, a node can hold different
values (at different times). For instance:

5

2 4

63

N0

N1

N2 N3

N4

5

2 4

63

N3

N0

N2 N4

N1

For AVL trees...

But if we force nodes to be traversed in BFS order...

5

2 4

63

N0

N1 N2

N3 N4

For AVL trees...

Is it possible for N0 to point to a node that is neither
N1 nor N2?

Is it possible for N2 to be pointed to by a node other
than N0?

5

2

3

N0

N1

N2

5

2 4

63

N

N N

N N

Is not AVL!

Therefore, there are
infeasible values...

For instance, for a tree with up to 7 nodos, h(n)<=3 for
all node n.

Left(N0) is either N1 or null (but not N2, N3,...)

Right(N0) is N1, N2 or null (but not N3, N4,...)

Right(Ni) != N2 for i != 0.

Therefore, there are
infeasible values...

These values correspond to tuples in fields, and
therefore, correspond to propositional variables in the
KodKod translation.

If we can remove these infeasible variables, the SAT-
solver has fewer assignements to try.

Refining bounds reduces to:

Forcing nodes to be allocated using a BFS traversal.

Establishing the infeasible variables for each field.

Doing all this in a fully automatic manner.

Hints:

Instrument the relational model with new formulas
forcing nodes to be allocated using a BFS ordering.

Check feasibility for each pair in a class field.

Instrumenting the model

5

2 4

63

N0

N1

N2

N3

N4

root

Rule1: The graph’s root is labeled N0.Rule2: Two nodes with the same parent are labeled from
left to right.Applying once again Rule 2,

Testing feasibility
Naive approach: use a cluster to analyze all
pair in fields in parallel.

N0.left = N0,
N0.left = N1,
...
N0.h = 0,
N0.h = 1,
...

For 20 nodes, there are
2120 analyses to be performed.

Problem...
generating an AVL tree with

20 nodes does not
finish.

No refined
bounds yet!

SATs

UNSATs

An Effective Approach
p0p1p2p3p4p5p6p7p8p9p10p11

p2

Bound
p0 p1 p2
p3 p4 p5
p6 p7 p8
p9 p10 p11

TIMEOUTS

p4

p0

p5

p1

p3

p6

p7 p8

p9

p11

p10

Bound
p0 p1
p3 p5

 p7 p8
p9 p10 p11

Demo 2: Instances from
refined bounds.
open generateAVL10Nodes.als (aprox. 1 minute)
open instGenerateAVL15Nodes.als

Code Analysis: Experimental
Results

We compare with:

 JForge (MIT)

Java Pathfinder (NASA)

KIASAN (Kansas State University)

ESC/Java2 (University College Dublin)

Jahob (ETH - Zurich)

Code Analysis: Experimental
Results

CL

CLN0

CLN1

CLN2

CLN3

next next

nextnext

prev

prev

prev

prev

header

CLN4 CLN5
nextfirstCacheNode next

CLN6

Figure 6. An instance from class NodeCachingLinkedList.

public Object remove(int index) {

 Node node = getNode(index, false);

 Object oldValue = node.getValue();

 super.removeNode(node);
 if (cacheSize > maximumCacheSize){

 return;

 }

 Node nextCacheNode = firstCacheNode;

 node.previous = null;

 node.next = nextCacheNode;

 firstCacheNode = node;

 return oldValue;

}

(a) (b)

public Object remove(int index) {

 Node node = getNode(index, false);

 Object oldValue = node.getValue();

 super.removeNode(node);
 if (cacheSize >= maximumCacheSize){

 return;

 }

 Node nextCacheNode = firstCacheNode;

 node.previous = null;

 node.next = nextCacheNode;

 firstCacheNode = node;

 return oldValue;

}

Figure 7. Code snippets from removeNode (a), and a mutant (b).

Table 1). Still, adding these times does not make any of the analysis

that did not exceed 10 hours, to yield a TO.

5 7 10 12 15 17

LList Cont NI 00:03 00:05 00:08 00:11 00:13 00:22

JF 00:01 02:00 TO TO TO TO

I 00:03 00:04 00:05 00:06 00:07 00:09

Ins NI 00:04 00:09 01:14 00:33 04:26 01:25

JF 00:02 04:56 TO TO TO TO

I 00:04 00:05 00:07 00:08 00:13 00:26

Rem NI 00:05 00:27 TO TO TO TO

JF 00:04 21:51 TO TO TO TO

I 00:04 00:06 00:11 00:12 00:17 00:33

AList Cont NI 00:05 00:11 00:29 00:38 00:42 01:20

JF 00:02 05:01 TO TO TO TO

I 00:04 00:06 00:16 00:22 00:27 00:58

Ins NI 00:04 00:05 01:02 26:22 TO TO

JF 00:03 11:52 TO TO TO TO

I 00:04 00:05 00:07 00:08 00:12 00:16

Rem NI 00:06 00:14 11:25 05:47:39 TO TO

JF 00:18 01:13:27 TO TO TO TO

I 00:05 00:06 00:17 00:31 01:08 03:13

TreeSet Find NI 02:13 04:36:49 TO TO TO TO

JF 00:42 01:57:49 TO TO TO TO

I 00:04 00:10 01:56 12:43 58:54 05:05:06

Ins NI 21:38 TO TO TO TO TO

JF OofM OofM OofM OofM OofM OofM

I 00:43 08:44 TO TO TO TO

AVL Find NI 00:14 27:06 TO TO TO TO

JF 00:26 03:10:10 TO TO TO TO

I 00:03 00:06 00:36 01:41 08:20 33:06

FMax NI 00:02 00:04 46:12 TO TO TO

JF 00:06 49:49 TO TO TO TO

I 00:01 00:01 00:03 00:04 00:09 00:13

Ins NI 01:20 05:35:51 TO TO TO TO

JF OofM OofM OofM OofM OofM OofM

I 00:07 00:34 04:47 21:53 02:53:57 TO

BHeap Min NI 00:03 00:41 TO TO TO TO

JF 00:22 01:23:07 TO TO TO TO

I 00:02 00:04 00:11 00:20 02:29 00:07

DecK NI 00:30 38:58 TO TO TO TO

JF 01:48 TO TO TO TO TO

I 00:10 00:59 24:05 02:42:30 TO 00:26

Ins NI 01:55 51:22 TO TO TO TO

JF 01:13:47 TO TO TO TO TO

I 00:16 01:05 10:44 21:31 01:20:09 51:55

Table 2. Comparison of code analysis times for 10 loop unrolls.

Let us consider class NodeCachingLinkedList, an implemen-

tation of the List interface from the apache commons.collections
package. As shown in Fig. 6, an instance has the actual (circular)

list, and a singly linked list (the cache). The cache list has a maxi-

mum size “maximumCacheSize” (maxCS), set in the actual code to

20 nodes. When a node is removed from the circular list, it is added

to the cache list (unless the cache is full). Let us consider the code

snippet from method remove presented in Fig. 7.(a). Figure 7.(b)

gives us a non equivalent mutant. The bug in the mutant arises

when a node is removed and the cache is full. Then, the 21st ele-

ment can be added to the cache, violating the part of the invariant

that constrains the cache size to be less than or equal to 20.

In Table 3 we report analysis information after looking for bugs

in the buggy mutant (BM) and the bug-free code (BF). We have

tailored both, the correct and the buggy code (and their contracts),

to be analyzed using the following tools: JForge, ESC/Java2 [5],

JavaPathFinder [23], Sireum/Kiasan [6], Jahob [4], Spec# [2] and

TACO (notice that while Jahob does not pretend to be a fully

automatic tool for bug finding, we chose it because it provides an

expressive specification language, and interfaces with several state-

of-the-art SMT-solvers). Once a bound was computed in 27:04 (a

JForge ESC/Java2 JPF Kiasan Jahob Spec# TACO

BM 06:16:23 OofM TO OofM TO 27:04 + 00:11

BF TO OofM TO OofM TO TO

Table 3. Outcome of the analysis using different tools. Up to 10

loop unrolls of method super.removeNode and maxCS = 20. Ten

hours timeout.

single iteration of the algorithm described in Section 3.2), it took

TACO 11 seconds to find the bug. This shows that many times

it is not necessary to compute the tight bound, but rather thin

the standard bound with a few iterations of the algorithm. The

debugging process consists on running a tool (as TACO, JForge,

etc.) and, if a bug is found, correct the error and start over to look

for further bugs. Unlike JForge (where each analysis is independent

of the previous ones), the same bound can be used by TACO for

looking for all the bugs in the code. Therefore, the time required

for computing the bound can be amortized among all the bugs in

the code. While it was not possible for TACO to compute the tight

bound for maxCS = 20 within 10 hours, it was possible to compute

it for maxCS = 18 in 07:50:17. Using this tight bound it was possible

to analyze the BF code in 19:10. If the timeout is set to 24 hours,

then Table 4 shows that TACO is the only tool that succeeds in

finding the bug and analyzing the correctness of the BF method.

JForge ESC/Java2 JPF Kiasan Jahob Spec# TACO

BM 06:16:23 OofM OofM 27:04 + 00:11

BF OofM OofM

Table 4. Up to 10 unrolls and maxCS = 20. Timeout = 24hs.

Since most tools failed to analyze the code with 10 loop unrolls,

we also considered a version of the code with 2 loop unrolls and

different values for maxCS; in this way the bug can be found in

smaller heaps. Table 5 reports for each tool: the maximum value of

maxCS for which the analysis succeeded within 10 hours, and the

corresponding analysis time. When the bug could not be found for

any value of maxCS or the BF method could not be analyzed, we

report maxCS = 0 and do not report an analysis time.

JForge ESC/Java2 JPF Kiasan Jahob Spec# TACO

BM maxCS 0 7 12 0

Time — 03:06 01:42 —

BF maxCS 0 6 12 0

Time — 03:43:14 01:41 —

Table 5. Up to 2 unrolls and variable maxCS. Ten hours timeout.

5. Related Work
In Section 3.1 we have analyzed related work on heap canonical-

ization. In Section 4 we have compared our tool with several other

state-of-the-art tools for code analysis. In this section we review

related (but difficult to compare experimentally) work.

Code Analysis: Experimental
Results

CL

CLN0

CLN1

CLN2

CLN3

next next

nextnext

prev

prev

prev

prev

header

CLN4 CLN5
nextfirstCacheNode next

CLN6

Figure 6. An instance from class NodeCachingLinkedList.

public Object remove(int index) {

 Node node = getNode(index, false);

 Object oldValue = node.getValue();

 super.removeNode(node);
 if (cacheSize > maximumCacheSize){

 return;

 }

 Node nextCacheNode = firstCacheNode;

 node.previous = null;

 node.next = nextCacheNode;

 firstCacheNode = node;

 return oldValue;

}

(a) (b)

public Object remove(int index) {

 Node node = getNode(index, false);

 Object oldValue = node.getValue();

 super.removeNode(node);
 if (cacheSize >= maximumCacheSize){

 return;

 }

 Node nextCacheNode = firstCacheNode;

 node.previous = null;

 node.next = nextCacheNode;

 firstCacheNode = node;

 return oldValue;

}

Figure 7. Code snippets from removeNode (a), and a mutant (b).

Table 1). Still, adding these times does not make any of the analysis

that did not exceed 10 hours, to yield a TO.

5 7 10 12 15 17

LList Cont NI 00:03 00:05 00:08 00:11 00:13 00:22

JF 00:01 02:00 TO TO TO TO

I 00:03 00:04 00:05 00:06 00:07 00:09

Ins NI 00:04 00:09 01:14 00:33 04:26 01:25

JF 00:02 04:56 TO TO TO TO

I 00:04 00:05 00:07 00:08 00:13 00:26

Rem NI 00:05 00:27 TO TO TO TO

JF 00:04 21:51 TO TO TO TO

I 00:04 00:06 00:11 00:12 00:17 00:33

AList Cont NI 00:05 00:11 00:29 00:38 00:42 01:20

JF 00:02 05:01 TO TO TO TO

I 00:04 00:06 00:16 00:22 00:27 00:58

Ins NI 00:04 00:05 01:02 26:22 TO TO

JF 00:03 11:52 TO TO TO TO

I 00:04 00:05 00:07 00:08 00:12 00:16

Rem NI 00:06 00:14 11:25 05:47:39 TO TO

JF 00:18 01:13:27 TO TO TO TO

I 00:05 00:06 00:17 00:31 01:08 03:13

TreeSet Find NI 02:13 04:36:49 TO TO TO TO

JF 00:42 01:57:49 TO TO TO TO

I 00:04 00:10 01:56 12:43 58:54 05:05:06

Ins NI 21:38 TO TO TO TO TO

JF OofM OofM OofM OofM OofM OofM

I 00:43 08:44 TO TO TO TO

AVL Find NI 00:14 27:06 TO TO TO TO

JF 00:26 03:10:10 TO TO TO TO

I 00:03 00:06 00:36 01:41 08:20 33:06

FMax NI 00:02 00:04 46:12 TO TO TO

JF 00:06 49:49 TO TO TO TO

I 00:01 00:01 00:03 00:04 00:09 00:13

Ins NI 01:20 05:35:51 TO TO TO TO

JF OofM OofM OofM OofM OofM OofM

I 00:07 00:34 04:47 21:53 02:53:57 TO

BHeap Min NI 00:03 00:41 TO TO TO TO

JF 00:22 01:23:07 TO TO TO TO

I 00:02 00:04 00:11 00:20 02:29 00:07

DecK NI 00:30 38:58 TO TO TO TO

JF 01:48 TO TO TO TO TO

I 00:10 00:59 24:05 02:42:30 TO 00:26

Ins NI 01:55 51:22 TO TO TO TO

JF 01:13:47 TO TO TO TO TO

I 00:16 01:05 10:44 21:31 01:20:09 51:55

Table 2. Comparison of code analysis times for 10 loop unrolls.

Let us consider class NodeCachingLinkedList, an implemen-

tation of the List interface from the apache commons.collections
package. As shown in Fig. 6, an instance has the actual (circular)

list, and a singly linked list (the cache). The cache list has a maxi-

mum size “maximumCacheSize” (maxCS), set in the actual code to

20 nodes. When a node is removed from the circular list, it is added

to the cache list (unless the cache is full). Let us consider the code

snippet from method remove presented in Fig. 7.(a). Figure 7.(b)

gives us a non equivalent mutant. The bug in the mutant arises

when a node is removed and the cache is full. Then, the 21st ele-

ment can be added to the cache, violating the part of the invariant

that constrains the cache size to be less than or equal to 20.

In Table 3 we report analysis information after looking for bugs

in the buggy mutant (BM) and the bug-free code (BF). We have

tailored both, the correct and the buggy code (and their contracts),

to be analyzed using the following tools: JForge, ESC/Java2 [5],

JavaPathFinder [23], Sireum/Kiasan [6], Jahob [4], Spec# [2] and

TACO (notice that while Jahob does not pretend to be a fully

automatic tool for bug finding, we chose it because it provides an

expressive specification language, and interfaces with several state-

of-the-art SMT-solvers). Once a bound was computed in 27:04 (a

JForge ESC/Java2 JPF Kiasan Jahob Spec# TACO

BM 06:16:23 OofM TO OofM TO 27:04 + 00:11

BF TO OofM TO OofM TO TO

Table 3. Outcome of the analysis using different tools. Up to 10

loop unrolls of method super.removeNode and maxCS = 20. Ten

hours timeout.

single iteration of the algorithm described in Section 3.2), it took

TACO 11 seconds to find the bug. This shows that many times

it is not necessary to compute the tight bound, but rather thin

the standard bound with a few iterations of the algorithm. The

debugging process consists on running a tool (as TACO, JForge,

etc.) and, if a bug is found, correct the error and start over to look

for further bugs. Unlike JForge (where each analysis is independent

of the previous ones), the same bound can be used by TACO for

looking for all the bugs in the code. Therefore, the time required

for computing the bound can be amortized among all the bugs in

the code. While it was not possible for TACO to compute the tight

bound for maxCS = 20 within 10 hours, it was possible to compute

it for maxCS = 18 in 07:50:17. Using this tight bound it was possible

to analyze the BF code in 19:10. If the timeout is set to 24 hours,

then Table 4 shows that TACO is the only tool that succeeds in

finding the bug and analyzing the correctness of the BF method.

JForge ESC/Java2 JPF Kiasan Jahob Spec# TACO

BM 06:16:23 OofM OofM 27:04 + 00:11

BF OofM OofM

Table 4. Up to 10 unrolls and maxCS = 20. Timeout = 24hs.

Since most tools failed to analyze the code with 10 loop unrolls,

we also considered a version of the code with 2 loop unrolls and

different values for maxCS; in this way the bug can be found in

smaller heaps. Table 5 reports for each tool: the maximum value of

maxCS for which the analysis succeeded within 10 hours, and the

corresponding analysis time. When the bug could not be found for

any value of maxCS or the BF method could not be analyzed, we

report maxCS = 0 and do not report an analysis time.

JForge ESC/Java2 JPF Kiasan Jahob Spec# TACO

BM maxCS 0 7 12 0

Time — 03:06 01:42 —

BF maxCS 0 6 12 0

Time — 03:43:14 01:41 —

Table 5. Up to 2 unrolls and variable maxCS. Ten hours timeout.

5. Related Work
In Section 3.1 we have analyzed related work on heap canonical-

ization. In Section 4 we have compared our tool with several other

state-of-the-art tools for code analysis. In this section we review

related (but difficult to compare experimentally) work.

Finding a Nontrivial Bug
Cache Lists: include a cache where removed nodes are
stored so that they are not garbage collected.

an iterative process that, after a number of iterations, converges to a
(possibly empty) set of models that cannot be checked (even using
the refined bounds) within the threshold T . Then, the bounds re-
finement process finishes. For all the case studies we are reporting
in Section 4 it was possible to check all the edges using this algo-
rithm. Since bounds only depend on the class invariant, the signa-
ture scopes and the typing of the method under analysis, the same
bound can be used (as will be seen in Section 4) to improve the
analysis of different methods. Therefore, once a bound has been
computed, it is stored in a bounds repository, as shown in Fig. 2.

4. Experimental Results
In this section1 we analyze methods from classes with rich invari-
ants. We will consider the following classes from the “collections”
framework:
LList: An implementation of sequences based on singly linked
lists.
AList: The actual implementation AbstractLinkedList of the
List interface from the apache package commons.collections,
based on circular doubly-linked lists.
TreeSet: The actual implementation of class TreeSet from pack-
age java.util, based on red-black trees.
AVLTree: An implementation of AVL trees obtained from the case
study used in [3].
BHeap: An implementation of priority queues based on binomial
heaps.

In Section 3 we emphasized the fact our technique allowed us
to remove variables in the translation to a propositional formula.
In Table 1 we report, for each class, the number of variables in
the non-instrumented upper bound (#NI), the size of the resulting
upper bound (number of feasible variables, noted #I), and the time
required by the algorithm from Section 3.2 to check feasibility. The
parallel algorithm was run in a cluster with 16 nodes, each node
having two Intel Dual Core Xeon processors (64 cores in total),
running at 2.67 GHz. Each node has 2 Gb of RAM shared among
the 4 cores. Times are reported using the format hh:mm:ss.

#Node 5 7 10 12 15 17

LList #NI 30 56 110 156 240 306
#I 9 13 19 23 29 33
Time 00:11 00:14 00:23 00:36 01:01 01:23

AList #NI 76 128 252 344 512 676
#I 33 47 68 82 103 117
Time 00:16 00:25 00:51 01:26 02:47 09:28

TrSet #NI 170 280 650 852 1200 2006
#I 59 107 200 279 424 533
Time 00:49 01:13 03:03 05:11 11:30 44:23

AVL #NI 150 280 650 852 1200 2006
#I 55 98 177 251 389 491
Time 00:33 00:57 03:26 09:53 22:03 1:41:31

BHeap #NI 170 280 650 852 1200 2006
#I 56 97 176 246 365 455
Time 00:48 00:53 02:47 05:10 14:29 33:05

Table 1. Sizes for instrumented (#I) and non-instrumented (#NI)
bounds, and analysis time for computation of instrumented bounds.

Once we have computed the bounds, in Table 2 we compare the
analysis times for methods in the studied classes, under three con-
ditions: (a) Using our translation, but without including the instru-
mentation and the tight bounds (NI), (b) using JForge [9] (a similar
SAT-based tool developed at MIT), and (c) using the instrumen-
tation and the tight bounds (I). In all cases we are checking that
the invariants are preserved. Also, for classes LList and AList,
we show that methods indeed implement the sequence operations.
Similarly, in class TreeSet we also show that methods correctly
implement the corresponding set operations. For class BHeap we

1 Note for the referee: All the information necessary to reproduce the exper-
iments is given in http://www.dc.uba.ar/TACO

CL

CLN0

CLN1

CLN2

CLN3

next next

nextnext

prev

prev

prev

prev

header

CLN4 CLN5
nextfirstCacheNode next

CLN6

Figure 6. An instance from class NodeCachingLinkedList.

also show that methods correctly implement the corresponding pri-
ority queue operations. Loops are unrolled up to 10 times, and no
contracts for called methods are being used (just their code). In
each column we consider different scopes for the nodes signature.
We set the scope for signature Data equal to the scope for nodes.
We have set a timeout (TO) of 10 hours for each one of the analy-
ses. Entries “OofM” mean “out of memory error”. Actually, JForge
ran out of memory while translating to a propositional formula. The
code being analyzed is bug-free. Since the process of bug finding
ends when no more bugs are found, this situation where bug free
code is analyzed, is a stress test that necessarily arises in actual bug
finding. Later in this section we will analyze buggy code. Since all
the analyses are sequential (the cluster has already been used for
computing the bounds in the instrumented case), we used a sin-
gle core. When reporting times using the instrumentation in TACO
(I), we are not adding the times (given in Table 1) to compute the
bounds. Still, adding these times does not make any of the analysis
that did not exceed 10 hours, to yield a TO.

5 7 10 12 15 17

LList Contains NI 00:03 00:05 00:08 00:11 00:13 00:22
JF 00:01 02:00 TO TO TO TO
I 00:03 00:04 00:05 00:06 00:07 00:09

Insert NI 00:04 00:09 01:14 00:33 04:26 01:25
JF 00:02 04:56 TO TO TO TO
I 00:04 00:05 00:07 00:08 00:13 00:26

Remove NI 00:05 00:27 TO TO TO TO
JF 00:04 21:51 TO TO TO TO
I 00:04 00:06 00:11 00:12 00:17 00:33

AList Contains NI 00:05 00:11 00:29 00:38 00:42 01:20
JF 00:02 05:01 TO TO TO TO
I 00:04 00:06 00:16 00:22 00:27 00:58

Insert NI 00:04 00:05 01:02 26:22 TO TO
JF 00:03 11:52 TO TO TO TO
I 00:04 00:05 00:07 00:08 00:12 00:16

Remove NI 00:06 00:14 11:25 05:47:39 TO TO
JF 00:18 01:13:27 TO TO TO TO
I 00:05 00:06 00:17 00:31 01:08 03:13

TreeSet Find NI 02:13 04:36:49 TO TO TO TO
JF 00:42 01:57:49 TO TO TO TO
I 00:04 00:10 01:56 12:43 58:54 05:05:06

Insert NI 21:38 TO TO TO TO TO
JF OofM OofM OofM OofM OofM OofM
I 00:43 08:44 TO TO TO TO

AVL Find NI 00:14 27:06 TO TO TO TO
JF 00:26 03:10:10 TO TO TO TO
I 00:03 00:06 00:36 01:41 08:20 33:06

FMax NI 00:02 00:04 46:12 TO TO TO
JF 00:06 49:49 TO TO TO TO
I 00:01 00:01 00:03 00:04 00:09 00:13

Ins NI 01:20 05:35:51 TO TO TO TO
JF OofM OofM OofM OofM OofM OofM
I 00:07 00:34 04:47 21:53 02:53:57 TO

BHeap Min NI 00:03 00:41 TO TO TO TO
JF 00:22 01:23:07 TO TO TO TO
I 00:02 00:04 00:11 00:20 02:29 00:07

DecK NI 00:30 38:58 TO TO TO TO
JF 01:48 TO TO TO TO TO
I 00:10 00:59 24:05 02:42:30 TO 00:26

Insert NI 01:55 51:22 TO TO TO TO
JF 01:13:47 TO TO TO TO TO
I 00:16 01:05 10:44 21:31 01:20:09 51:55

Table 2. Comparison of code analysis times for 10 loop unrolls.

Looking in Table 2 at the progression of analysis times for
TACO without bounds and JForge, it is clear that TACO with tight
bounds requires in most cases several orders of magnitude less
analysis time.

Let us consider class NodeCachingLinkedList, an implemen-
tation of the List interface from the apache commons.collections

Experimental Results
public Object remove(int index) {

 Node node = getNode(index, false);

 Object oldValue = node.getValue();

 super.removeNode(node);
 if (cacheSize > maximumCacheSize){

 return;

 }

 Node nextCacheNode = firstCacheNode;

 node.previous = null;

 node.next = nextCacheNode;

 firstCacheNode = node;

 return oldValue;

}

(a) (b)

public Object remove(int index) {

 Node node = getNode(index, false);

 Object oldValue = node.getValue();

 super.removeNode(node);
 if (cacheSize >= maximumCacheSize){

 return;

 }

 Node nextCacheNode = firstCacheNode;

 node.previous = null;

 node.next = nextCacheNode;

 firstCacheNode = node;

 return oldValue;

}

Figure 7. Code snippets from remove (a), and a mutant (b).

package. As shown in Fig. 6, an instance has the actual (circular)
list, and a singly linked list (the cache). The cache list has a max-
imum size “maximumCacheSize” (maxCS), set in the actual code
to a default value of 20 nodes. When a node is removed from the
circular list, it is added to the cache (unless the cache is full). Let
us consider the code snippet from remove presented in Fig. 7.(a).
Figure 7.(b) gives us a mutant. A bug arises in the mutant when
a node is removed and the cache is full. Then, the 21st element
can be added to the cache, violating the part of the invariant that
constrains the cache size to be at most 20.

In Table 3 we report analysis information after looking for the
bug in the mutant (BM), for varying numbers of loop unrolls in
method super.removeNode. We have tailored the mutant (and
its contract), to be analyzed using the following tools: JForge,
ESC/Java2 [5], JavaPathFinder [25], Sireum/Kiasan [7], Jahob [4],
Dafny [20] and TACO. Notice that while Jahob does not pretend to
be an automatic tool for bug finding, we chose it because it provides
an expressive specification language, and it interfaces with several
state-of-the-art SMT-solvers. Since JPF does not include a way to
prescribe the number of loop unrolls, we unrolled the loop as many
times as necessary in the source code. When a tool runs out of
memory after running N minutes, we report it as “OofM(N)”.

We computed a bound for TACO in 27:04 using one iteration
of the algorithm from Section 3.2. Table 3 shows that many times
it is not necessary to compute the tight bound, but rather thin the
default bound with a few iterations of the algorithm in order to
achieve a significant speed up in analysis time. The debugging
process consists on running a tool (such as TACO, JForge, etc.)
and, if a bug is found, correct the error and start over to look for
further bugs. Unlike JForge (where each analysis is independent
of the previous ones), the same bound can be used by TACO for
looking for all the bugs in the code. Therefore, the time required
for computing the bound can be amortized among these bugs. Since
the bound does not depend on the number of unrolls, in Table 3 we
have divided 27:04 among the 7 experiments, adding 03:52 to each
experiment. Time is reported as “bound computation time” + “SAT-
solving time”.

LU JForge ESC/Java2 JPF Kiasan Jahob TACO

4 OofM(227) OofM(206) TO OofM(4) 03:03:19 03:52 + 03:56
6 TO OofM(207) TO OofM(4) 05:05:29 03:52 + 31:14
8 OofM(287) OofM(213) TO OofM(4) 07:39:01 03:52 + 33:23

10 05:40:22 OofM(215) TO OofM(4) TO 03:52 + 00:11
12 06:53:04 OofM(219) TO OofM(4) TO 03:52 + 03:30
15 24:08 OofM(219) TO OofM(4) TO 03:52 + 15:00
20 TO OofM(218) TO OofM(4) TO 03:52 + 00:06

Table 3. Outcome of the analysis maxCS = 20. Ten hours timeout.

As expected, Jahob failed to prove that the code was correct, but
did not report wether a bug was found.

We also compared with Boogie [2] using Z3 [6] as the back-end
SMT solver. In order to produce Boogie code we used Dafny [20]
as the high-level programming and specification language. When
ran on the BM code with 10 loop unrolls, Boogie produced in the

order of 50 warning messages signaling potential bugs. A careful
inspection allowed us to conclude that all warnings produced by
Boogie were false warnings.

Since most tools failed to find the bug with maxCS = 20, we
also considered a version of the code with up to 2 loop unrolls
and varying values for maxCS; in this way the bug can be found in
smaller heaps. Table 4 reports the corresponding analysis times. In
TACO we have restricted the algorithm that computes the bound
for each scope to run at most 30 minutes.

mCS JForge ESC/Java2 JPF Kiasan Jahob TACO

5 00:13 OofM(187) 00:07 00:18 01:15:23 01:21 + 00:01
10 05:13 OofM(212) 00:20 00:43 01:16:17 02:25 + 00:11
13 OofM(529) OofM(221) 00:38 OofM(3) 01:16:17 05:27 + 00:32
15 OofM(334) OofM(214) 00:53 OofM(3) 01:14:29 21:31 + 00:15
18 14:04 OofM(200) 01:27 OofM(4) 01:17:35 30:00 + 02:27
20 OofM(494) OofM(556) 02:17 OofM(4) 01:17:02 30:00 + 02:11

Table 4. Up to 2 unrolls and varying maxCS. Ten hours timeout.

The code has a bug that requires building a non-trivial heap to
expose it. The technique introduced in this article made TACO the
only tool capable of finding the bug in all cases reported in Tables
3 and 4. When the size of the code is small (2 loop unrolls in Table
4), tools based on model checking were able to find the bug. They
failed on larger code, which shows that in the example TACO scales
better. Tools based on SMT solving systematically failed to expose
the bug. The reason is that while SMT solving is a more powerful
technique that allows to actually verify properties of code, it does
so in very restricted scenarios and requires writing specifications in
a form amenable to the SMT solver. On the other hand, SAT-based
bug finding as reported in this article offers a more limited kind of
analysis, but can be used as an actual push-button technology.

5. Related Work
In Section 3.1 we have analyzed related work on heap canonical-
ization. In Section 4 we have compared our tool with several other
state-of-the-art tools for code analysis. In this section we review
related (but difficult to compare experimentally) work.

The Alloy Annotation Language (AAL) was introduced in [18].
It allows to annotate Java-like code using Alloy as the annotation
language. The translation proposed in [18] does no differ in major
ways from the one we implement. Analysis using AAL does not
include any computation of bounds for fields.

In [24] the authors present a set of rules to be applied along
the translation to a SAT-formula in order to profit from properties
of functional relations. The article presents a case-study where
insertion in a red-black tree is analyzed. The part of the red-black
tree invariant that constrains trees to not have two consecutive
red nodes is shown to be preserved. In our experiment we prove
that the complete (more complex) invariant is preserved. Actually,
for 8 loop unrolls and scope 7 for nodes and data, the analysis
time decreases from 08:53 (for the property we analyze) to 0.153
seconds using the weakened property.

Saturn [26] is also a SAT-based static analysis tool for C. It uses
as its main techniques a slicing algorithm and function summaries.
While as in our case sequential code is faithfully modeled at the in-
traprocedural level (no abstractions are used), summaries of called
functions may produce (unlike TACO) spurious counterexamples.
Saturn can check assertions written as C “assert” statements. Its
assertion language is not as declarative as our extension of JML.

F-Soft [15] also analyses C code. It computes ranges for val-
ues of integer valued variables and for pointers under the hypoth-
esis that runs have bounded length. It is based on the framework
presented in [22]. Our technique produces tighter upper bounds be-
cause it does not compute feasible intervals for variables, but in-
stead checks each individual value. An advantage of F-Soft is that

public Object remove(int index) {

 Node node = getNode(index, false);

 Object oldValue = node.getValue();

 super.removeNode(node);
 if (cacheSize > maximumCacheSize){

 return;

 }

 Node nextCacheNode = firstCacheNode;

 node.previous = null;

 node.next = nextCacheNode;

 firstCacheNode = node;

 return oldValue;

}

(a) (b)

public Object remove(int index) {

 Node node = getNode(index, false);

 Object oldValue = node.getValue();

 super.removeNode(node);
 if (cacheSize >= maximumCacheSize){

 return;

 }

 Node nextCacheNode = firstCacheNode;

 node.previous = null;

 node.next = nextCacheNode;

 firstCacheNode = node;

 return oldValue;

}

Figure 7. Code snippets from remove (a), and a mutant (b).

package. As shown in Fig. 6, an instance has the actual (circular)
list, and a singly linked list (the cache). The cache list has a max-
imum size “maximumCacheSize” (maxCS), set in the actual code
to a default value of 20 nodes. When a node is removed from the
circular list, it is added to the cache (unless the cache is full). Let
us consider the code snippet from remove presented in Fig. 7.(a).
Figure 7.(b) gives us a mutant. A bug arises in the mutant when
a node is removed and the cache is full. Then, the 21st element
can be added to the cache, violating the part of the invariant that
constrains the cache size to be at most 20.

In Table 3 we report analysis information after looking for the
bug in the mutant (BM), for varying numbers of loop unrolls in
method super.removeNode. We have tailored the mutant (and
its contract), to be analyzed using the following tools: JForge,
ESC/Java2 [5], JavaPathFinder [25], Sireum/Kiasan [7], Jahob [4],
Dafny [20] and TACO. Notice that while Jahob does not pretend to
be an automatic tool for bug finding, we chose it because it provides
an expressive specification language, and it interfaces with several
state-of-the-art SMT-solvers. Since JPF does not include a way to
prescribe the number of loop unrolls, we unrolled the loop as many
times as necessary in the source code. When a tool runs out of
memory after running N minutes, we report it as “OofM(N)”.

We computed a bound for TACO in 27:04 using one iteration
of the algorithm from Section 3.2. Table 3 shows that many times
it is not necessary to compute the tight bound, but rather thin the
default bound with a few iterations of the algorithm in order to
achieve a significant speed up in analysis time. The debugging
process consists on running a tool (such as TACO, JForge, etc.)
and, if a bug is found, correct the error and start over to look for
further bugs. Unlike JForge (where each analysis is independent
of the previous ones), the same bound can be used by TACO for
looking for all the bugs in the code. Therefore, the time required
for computing the bound can be amortized among these bugs. Since
the bound does not depend on the number of unrolls, in Table 3 we
have divided 27:04 among the 7 experiments, adding 03:52 to each
experiment. Time is reported as “bound computation time” + “SAT-
solving time”.

LU JForge ESC/Java2 JPF Kiasan Jahob TACO

4 OofM(227) OofM(206) TO OofM(4) 03:03:19 03:52 + 03:56
6 TO OofM(207) TO OofM(4) 05:05:29 03:52 + 31:14
8 OofM(287) OofM(213) TO OofM(4) 07:39:01 03:52 + 33:23

10 05:40:22 OofM(215) TO OofM(4) TO 03:52 + 00:11
12 06:53:04 OofM(219) TO OofM(4) TO 03:52 + 03:30
15 24:08 OofM(219) TO OofM(4) TO 03:52 + 15:00
20 TO OofM(218) TO OofM(4) TO 03:52 + 00:06

Table 3. Outcome of the analysis maxCS = 20. Ten hours timeout.

As expected, Jahob failed to prove that the code was correct, but
did not report wether a bug was found.

We also compared with Boogie [2] using Z3 [6] as the back-end
SMT solver. In order to produce Boogie code we used Dafny [20]
as the high-level programming and specification language. When
ran on the BM code with 10 loop unrolls, Boogie produced in the

order of 50 warning messages signaling potential bugs. A careful
inspection allowed us to conclude that all warnings produced by
Boogie were false warnings.

Since most tools failed to find the bug with maxCS = 20, we
also considered a version of the code with up to 2 loop unrolls
and varying values for maxCS; in this way the bug can be found in
smaller heaps. Table 4 reports the corresponding analysis times. In
TACO we have restricted the algorithm that computes the bound
for each scope to run at most 30 minutes.

mCS JForge ESC/Java2 JPF Kiasan Jahob TACO

5 00:13 OofM(187) 00:07 00:18 01:15:23 01:21 + 00:01
10 05:13 OofM(212) 00:20 00:43 01:16:17 02:25 + 00:11
13 OofM(529) OofM(221) 00:38 OofM(3) 01:16:17 05:27 + 00:32
15 OofM(334) OofM(214) 00:53 OofM(3) 01:14:29 21:31 + 00:15
18 14:04 OofM(200) 01:27 OofM(4) 01:17:35 30:00 + 02:27
20 OofM(494) OofM(556) 02:17 OofM(4) 01:17:02 30:00 + 02:11

Table 4. Up to 2 unrolls and varying maxCS. Ten hours timeout.

The code has a bug that requires building a non-trivial heap to
expose it. The technique introduced in this article made TACO the
only tool capable of finding the bug in all cases reported in Tables
3 and 4. When the size of the code is small (2 loop unrolls in Table
4), tools based on model checking were able to find the bug. They
failed on larger code, which shows that in the example TACO scales
better. Tools based on SMT solving systematically failed to expose
the bug. The reason is that while SMT solving is a more powerful
technique that allows to actually verify properties of code, it does
so in very restricted scenarios and requires writing specifications in
a form amenable to the SMT solver. On the other hand, SAT-based
bug finding as reported in this article offers a more limited kind of
analysis, but can be used as an actual push-button technology.

5. Related Work
In Section 3.1 we have analyzed related work on heap canonical-
ization. In Section 4 we have compared our tool with several other
state-of-the-art tools for code analysis. In this section we review
related (but difficult to compare experimentally) work.

The Alloy Annotation Language (AAL) was introduced in [18].
It allows to annotate Java-like code using Alloy as the annotation
language. The translation proposed in [18] does no differ in major
ways from the one we implement. Analysis using AAL does not
include any computation of bounds for fields.

In [24] the authors present a set of rules to be applied along
the translation to a SAT-formula in order to profit from properties
of functional relations. The article presents a case-study where
insertion in a red-black tree is analyzed. The part of the red-black
tree invariant that constrains trees to not have two consecutive
red nodes is shown to be preserved. In our experiment we prove
that the complete (more complex) invariant is preserved. Actually,
for 8 loop unrolls and scope 7 for nodes and data, the analysis
time decreases from 08:53 (for the property we analyze) to 0.153
seconds using the weakened property.

Saturn [26] is also a SAT-based static analysis tool for C. It uses
as its main techniques a slicing algorithm and function summaries.
While as in our case sequential code is faithfully modeled at the in-
traprocedural level (no abstractions are used), summaries of called
functions may produce (unlike TACO) spurious counterexamples.
Saturn can check assertions written as C “assert” statements. Its
assertion language is not as declarative as our extension of JML.

F-Soft [15] also analyses C code. It computes ranges for val-
ues of integer valued variables and for pointers under the hypoth-
esis that runs have bounded length. It is based on the framework
presented in [22]. Our technique produces tighter upper bounds be-
cause it does not compute feasible intervals for variables, but in-
stead checks each individual value. An advantage of F-Soft is that

Thanks!

Marcelo Frias mfrias@dc.uba.ar
University of Buenos Aires
Argentina
(Joint work with Juan Galeotti and Nicolas Rosner)

mailto:mfrias@dc.uba.ar

